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Intermittency of temperature field in turbulent convection
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The scaling behavior of the temperature structure functions in turbulent convection is found to be different
for length scales below and above the Bolgiano scale. Both sets of the exponents are well described by
log-Poisson statistics. The paramegsr which measures the degree of intermittency is the same for the two
regimes of scales and is consistent with the corresponding value for the passive scalar field. A balance between
thermal forcing and nonlinear velocity advection, which is a key ingredient leading to Bolgiano scaling, is also
checked.

PACS numbds): 47.27.Te, 05.40-a

A key issue in turbulence research is to make sense of thend temperature dissipation rates. We shall see that the scal-
apparently random fluctuations of the various physical fieldéng behavior of the temperature structure functions is indeed
involved in a turbulent fluid flow. The seminal work of Kol- different for length scales below and abdye Moreover, it
mogorov in 1941(K41) [1] predicts that the velocity struc- is found that both sets of the exponents can be well described
ture functions have power-law scaling with the separatind?y l0g-Poisson statistics.
distance in the inertial range, the range of length scales that In the original works of Bolgiang15] and Obukho\16]
are smaller than those of energy input and larger than thod@r stably stratified turbulencesee[17] for a review, the
affected directly by molecular dissipation, and the scalingtemperature power spectrum is predicted to have a scaling
exponents are proportional to the order of the structure func=K~"® when the wave numbérsatisfies 2r/k>Ig . Results
tion. This direct proportionality is equivalent to an indepen-in agreement with the Bolgiano-Obukhov scaling have been
dence of the functional form of the probability density func- reported for the temperature frequency power spectrum mea-
tion (PDP of the velocity difference of the separating sured in heliuni18] and wateff19]. In the case of water, the
distance. Experimental observations confirm the power-lairequency and wave number spectra were shown to coincide
scaling but suggest that the exponent is a nonlinear functiowith each other in regions where a mean flow exists. A key
of the order. This deviation from the K41 results implies thatingredient leading to the Bolgiano-Obukhov scaling is the
the velocity field has scale-dependent statistical propertieBalance between thermal forcing and nonlinear velocity ad-
and is thus intermittent. Other physical quantities such as thgection. Such a balance in turn relates the exponents of the
temperature and pressure fields have also been found to Melocity and the temperature structure functions. We shall
intermittent in turbulent flows. check this relation using the exponents of temperature struc-

Kolmogorov [2] and Obukhov[3] proposed a refined ture functions for length scales aboVg obtained in the
similarity hypothesigRSH) which attributes intermittency of present study and the exponents of velocity structure func-
the velocity field to the spatial variations of the energy dis-tions measured in a numerical study of Rayleigh&el
sipation rate that were neglected in the K41 theory. Recentlygonvection[20—-22.

She and Levequi4] proposed a hierarchical relation for the ~ The temperature data analyzed in the present work were
moments of the locally averaged energy dissipation rateobtained in the well-documented Chicago experiment of
With RSH, this leads to a similar relation for the velocity low-temperature helium gg23,24. The experimental cell
structure functions. These moment hierarchies were latdteated from below is cylindrical with a diameter of 20 cm
shown to be naturally satisfied by log-Poisson statigéigs]. ~ and a height ot =40 cm. The Rayleigh numbgRa) can be

It has been found that the locally averaged energy dissipatioas high as 1& and a mean circulating flow is found for Ra
rate[7], the velocity field 8,9], the passive scalar dissipation =10°. The temperature at the center of the c&(t), was
rate,[10] and the passive scalar figfd1] in Navier-Stokes measured as a function of timeWe use Taylor hypothesis
turbulence, and the velocity field in a class of shell modelsand evaluate the temperature difference between two times:
[12—14 all satisfy the log-Poisson moment-relations. It is T (t)=T(t+ 7)—T(t).

thus interesting to investigate how general or universal log- In an earlier worK 25], the functional form of the PDF of
Poisson intermittency is. T, was found to depend on which demonstrates that the

In this paper, intermittency of the temperature field intemperature field is intermittent. From thedependence, the
turbulent convection is studied. In convection, the dynamicgissipative and the circulation time scaleg,and 7., were
is driven by the temperature difference, thus the temperaturalso identified. The time scaleg corresponding tdg is
field is an active scalar. An interesting question is how tur-given by rg=7.lg/L. It was shown[19] that |5 can be
bulence is affected by buoyancy. One expects buoyancy taritten as
be important for length scales larger than the Bolgiano scale
lg which is defined ase®¥[ x**(«g)®?], where a is the NuL2L
volume expansion coefficient of the fluig,the acceleration = ————,
due to gravity,e and y are respectively the average energy (Ra Py
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FIG. 1. @ log;Si(7)/Sy(n)Y?] vs logy7) and (b)
l0g;o[S1(7)] vs |0910[éz(7;] for Ra=7.3x 10%. Thoe arrows, from FIG. 2. logd Sy(7)/Sy(7)P?] vs loaid Si(7)/Sy(7)*?] with (a)

left to right, indicate the data evaluated respectively at the thre@=0.-5 and(b) p=2.4 for Ra ranges from foto 10? (dashed
time scalesry, 75, andr,. All times are in units of the sampling lines). The scaling range first increases when Ra increases from

time = 1/320 s. Two scaling regions are observedferrg andr  6:0x10° (squaresto 7.3x 10" (circles, then decreases as Ra is
> 1. further increased to 5:810' (triangles. The solid line is the best

linear fit of the scaling range for Ra7.3x 10'°. In the insets, the

where the Nusselt numbéNu) is the heat flux normalized data for Ras 7.3x 10° (circles and the best linear fisolid line) to
by that when there was only conduction and the Prandtihe scaling range are shown separately. The arrows, from left to
number (Pr) is the ratio between kinematic viscosity and right, indicate the data evaluated respectivelyat 7, and ..
thermal diffusivity. With Eq.(1), 75 is easily evaluated using
the measured values of Nu, Ra, and Pr. case, IogO[Sp(r)/Sz(r)p’Z] is plotted as a function of

The temperature structure functio®(7)=(|T,|?) are logid Si(7)/S,(7)*?] and the slope ish(p)=pup/u1. As
studied. For all the datasets with Ra ranges frofhtdQL0*>,  shown in Fig. 2, the scaling region revealed by these plots
no discernible scaling is observed wh8g(7) is plotted di-  first increases as Ra increases fronf 16 10'* but then
rectly againstr in a log-log plot. On the other hand, scaling decreases for higher Ra. This observation is consistent with
is observed when the normalized structure functionprevious findings of changes in the behavior of the tempera-
l0g:d Sp(7)/Sy(7) P’2] is plotted versus logr. Interestingly,  ture frequency power spectrur8] and the normalized tem-
two scaling regions with different exponents,, are ob- perature dissipatiof28] but is not yet understood. For the
served forr below and aboverg [see Fig. 1a)]. Similarly, ~ present purpose, we concentrate on the data with the longest
two regions with different exponents,,, are also observed scaling range which were taken at-R@.3x 10'° (see insets
when logoSy(7) is plotted against logS,(7) [see Fig. of Fig. 2). The number of data points is 614 400. The three
1(b)] using the idea of extended self-similaritgSS [26].  time scales areq~6, 73~60, and7r,~1750 in units of the
Thus, the temperature structure functions have different scabampling time=1/320 s. Interestingly, one straight line is
ing behavior in the two regimes of length scales separated bybserved forry<7< 7., which suggests that some common
the Bolgiano scale. feature exists although the intermittency exponeagsand

The scaling behavior is also studied using the idea othe relative scaling exponentg, are different in the two
generalized extended self-similarifGESS [27]. In this  regimes of scaleésee below.
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Let us first investigate whether the temperature structure -0.01
functions obey the following log-Poisson hierarchy:
. . -0.03 |
S(PJ“W)(T):Ap'q[S(P!Q)(T)]BT[S(“‘Q)(T)]l‘ﬁT, 2) _
W -0.05 |
where 0<37<1, £l
& 007
SPD(7)=S,. 4(7)/Sy(7), ® 2
5
S=9(7)= lim SPD(7), @ § %
pooe 2
g 011
andA,, , are constants independent of Equation(2) gen- -
eralizes the She-Leveque relatiph] to g not necessarily

equal to 1. As a result, one can check the hierarchy without -016 -014 -012 -010 -0.08 -006 -0.04 -0.02
the need to calculate structure functions of very high order log, [S®(z.)/S™(z,)]

when small values of] are used. This is particularly useful 10 ! 2
when long datasets are not available. The log-Poisson hier- G, 3. jog SP* 99 (7,)/SP99(7,)] plotted as a function of

arachy(2) predicts that log,d SP9(7,)/SPD(7,)] with q=0.4 for various pairs of, and

T2. 7'1:8, 7'2:32 (d|am0nd$, T1= 10, 7'2:20 (Stal’3; 1= 10, )

(l—ﬂ%) =50 (inverted triangles m,=64, 7,=256 (squarel 7,=100, 7,

Mp=a 1—p5— — P (53 =500 (circles; and 7, =150, ,= 300 (triangles. All times are in
units of the sampling time=1/320 s. The solid lines are linear fits

of the data.
1-pBR+(b/a)p 5b)
A= 5~
P 1-pB7+2(b/a) 0, 7<7g
b= 8

. . . iy | -o. . >3,
where a=0 as required by the Hder inequalities. The 0.12:0.01, 7>7g

boundedness of the temperature field constraittsbe non- If Sy(7)~ 7%, then ¢,=a(1—B%)+bp. Also, we have
negative if the scaling holds far—0. Sincery/7.—0 as Ra

Hoclnz, bz_o _fqr 7<7g. On the other hanc_j, as Nu scales like straight line of slope, when plotting ., versusa,— p/2.
Ral’? for infinite Ra[29], 75/ 7. becomes independent of Ra, Straight lines are indeed observed in such plots &nds

thus the value ob for 7> 7g is not constrained. The param- oqtimated to be 0.980.01 and 0.48 0.005 for < 75 and
eter Sy measures the degree of intermittency whilandb .~ - “regpectively. These estimates are found to be consis-

can be interpreted respectively as the codimension and the,: with the values evaluated usiagb and B;. Note that

exponent of the most singular structures associated with thée2 is predicted to be 2/3 for a passive scalar in Navier-Stokes

turbulent temperature field. . . . .
: , turbulence and 2/5 for Bolgiano scaling when intermittency
If Eq. (2) is valid, a plot of logdSP**(r))/ o'\ ot taken into account.

SPra9(r,)] against logd SV (,)/SP9(7,)] by varying An exact balance between thermal forcing and nonlinear
p for a given pair ofr;, 7, and fixedq should give a straight velocity advection is denoted by
line with slopes$. The straight lines observed in Fig. 3 thus
verify that Eq.(2) is satisfied. Note that theameslope is
found for bothr; , below or aboverg which shows thaB+ is 10 -
the same for the two regimes of scales. From the slopes o
the straight linespt is estimated to be 0.620.02. Interest-
ingly, this value is consistent with the corresponding value 0.8
for the passive scalar field1].
Equation(5a) implies that

Mp=Lp—PLoI2 andap={,/{,. Therefore, one should get a

& 0.6 r

_2(1-BH-(1-BHp © <

S 18y 0.4 |
Therefore,3; can also be estimated usihgp). As can be
seen in Fig. 4,h(p) is well fitted by Eq.(6) with Bt 02
=0.63, which is consistent with the above estimate. Vigith
found,a andb can be estimated from, and «, using Egs. 0.0 h . ‘ . &
(58 and(5b). The results are 0.0 05 1.0 1.5 2.0

P
a= 155501, 7<7s ) FIG. 4. Graph of the slopds(p) in GESS plots. The solid line

1.2£0.1, 7>r7g, is a fit using Eq.(6). The fitted value of3+ is 0.63.
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FIG. 5. Comparison of Eq(10) (solid line) with the scaling
exponentsé, obtained in a numerical study2?] (circles. The
dashed line is; £5°.

V2
—~agT,, 9

wherev, andT, are the velocity and temperature differences
across a separating distarrcd his balance thus predicts that

&p= Lot pl2, whereg, is defined by(|v,|P)~rér. As a first
attempt to directly check this balance, we estimgteby
mpTPLol2 or {; ay. Our present results thus imply

p

p=ar(1-BY9)+(1+bo )5 (10
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convection, we turn to numerical velocity measurements and
compare Eq(10) with the numerical values @, reported in
Ref.[22]. In Fig. 5, we see that agreement is not found. In
the same numerical study, it was further found that the rela-
tive exponents{,/&; are consistent with those of Navier-
Stokes turbulencf22] which are well described by the She-
Leveque formuld4]: &= p/9+2[1—(2/3)""] (see Fig. 5
This finding is also seen to be incompatible with Ef0)

and 8+=0.62.

In summary, intermittency of the temperature field in tur-
bulent convection has been studied. As expected, buoyancy
affects the statistics of turbulence for length scales larger
than the Bolgiano scale, and two different sets of intermit-
tency and relative scaling exponents are found for the two
regimes of scales. Both sets of the exponents are found to be
well described by log-Poisson statistics. The paramgter
which measures the degree of intermittency of the tempera-
ture field, is the same for the two regimes of scales, and is
consistent with the corresponding value for the passive scalar
field. On the other han@ andb, which can be interpreted as
the codimension and the exponent of the most singular struc-
tures, are different for scales below and above the Bolgiano
scale. A simple balance between thermal forcing and nonlin-
ear velocity advection as represented by &), which is a
key ingredient leading to the Bolgiano-Obukhov scaling, is
also checked. Preliminary evidence suggests that this balance
does not hold. Further analyses using simultaneous velocity
and temperature data will be performed and results presented
elsewhere.
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